

Le Dipôle RC

Résumé:5

Niveaux:SM PC SVT

Dipôle RC : association série d'un conducteur ohmique de résistance R et d'un condensateur de capacité C

1. Condensateur:

Description.

Un condensateur est un dipôle constitué de deux armatures métalliques parallèles, placées à des potentiels différents et séparées par un isolant ou un diélectrique.

Armature A Diélectrique Armature B

Relation charge-tension.

La charge d'un condensateur, notée q, est liée à la tension U par la relation :

q = C.U Avec: C: capacité du condensateur (F) q: charge du condensateur (C) U: tension (V)

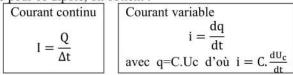
Capaciténd'un mondensateur :

- Le coefficient de proportionnalité C est appelé capacité du condensateur.
- Son unité est le Farad (F)
- Autres unités du Farad

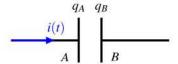
Expressionmed'intensité.

Par définition, l'intensité du courant traversant un condensateur est la variation de la charge q au cours du temps.

En adoptant la convention réceptrice pour ce dipôle, on obtient :



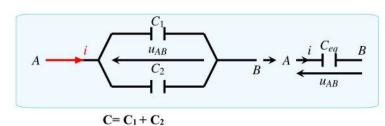
2. Sens conventionnel du courant :



Le sens positif (Conventionnel) du courant est toujours vers l'armature positive.

3. Association des condensateurs :

Association en parallèle



La capacité équivalente C du condensateur équivalent de l'association en parallèle de deux condensateurs est égale à la somme de leurs capacités C_1 et C_2 .

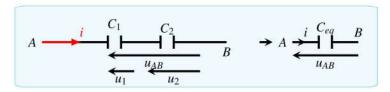
NB:

La capacité équivalente C de plusieurs condensateurs de capacités C_1 , C_2 , C_3 ... C_n montés en parallèle, de capacité est la somme des capacités de chaque condensateur : C_{IF} E_C_i

Interetment'association:

 $C = C_1 + C_2$: L'intérêt de l'association en parallèle des condensateurs est d'obtenir une capacité équivalente supérieure à la plus grande d'entre elles. $C > C_1$ et $C > C_2$

Association en série :



La capacité équivalente C du condensateur équivalent de l'association en série de deux condensateurs de capacités C₁ et C₂ est telle que

$$\frac{1}{c} = \frac{1}{c_1} + \frac{1}{c_2}$$
 et $C = \frac{c_1 \cdot c_2}{c_1 + c_2}$

NB:

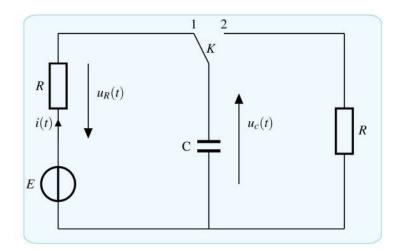
La capacité équivalente C du condensateur équivalent de l'association en série des condensateurs de capacités $C_1, C_2, C_3 \dots C_n$, montés en série, vérifie la relation : $\frac{1}{C} = \sum \frac{1}{C_1} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \dots + \frac{1}{C_n}$

Interetided'association:

 $C = \frac{C_1 \cdot C_2}{C_1 + C_2}$: L'intérêt de l'association en parallèle des condensateurs est d'obtenir une capacité équivalente inferieure à la plus petite d'entre elles. $C < C_1$ et $C < C_2$

4. Charge d'un condensateur : Montage de la charge :

Interrupteur K sur la position (1)



Equation différentielle:

En appliquant la loi d'additivité des tensions $U_R + U_C = E$ et les transitions $U_R = R$, i = R, $\frac{dq}{dt} = R$, C, $\frac{dU_C}{dt}$ On aboutit à l'équation différentielle vérifié par une variable donnée

Variable la tension du condensateur Uc: $U_c + R.C. \frac{dU_c}{dt} = E$

Variable la charge q: $\frac{\mathbf{q}}{\mathbf{c}} + \mathbf{R} \cdot \frac{\mathbf{dq}}{\mathbf{dt}} = \mathbf{E}$ Ou $\mathbf{q} + \mathbf{R} \cdot \mathbf{C} \cdot \frac{\mathbf{dq}}{\mathbf{dt}} = \mathbf{E} \cdot \mathbf{C}$

Equation horaire:

On montre, en mathématique, que la solution de cette équation différentielle est : $u_C(t) = Ae^{-\alpha t} + B$ telle que A, B et α des constantes que peut les déterminer

• Détermination de A et B

En portant cette solution dans l'équation différentielle, on détermine la constante α et la constante B.

$$R C \frac{du_C}{dt} + u_C = E \Leftrightarrow R C(-\alpha A e^{-\alpha t}) + A e^{-\alpha t} + B = E$$
$$\Leftrightarrow A e^{-\alpha t} (1 - R C\alpha) + B = E$$

d'où

$$1 - R \ C\alpha = 0 \Longrightarrow \alpha = \frac{1}{R \ C}$$

donc la solution peut s'écrire sous la forme suivante : $u_C(t) = Ae^{-\frac{t}{R_1C}} + E$

•Les conditions initiales

En considérant les conditions initiales à l'instant t = 0 on a $u_C(0) = 0$ on détermine A car $u_C(t)$

est une fonction continue à chaque instant t du fonctionnement du condensateur parmi eux la date t=0 :

$$u_C(t=0^+) = u_C(t=0^-) = 0 \Longrightarrow u_C(0) = A + E \Longrightarrow A = -E$$
 Donc la solution s'écrit :
$$u_C(t) = E\left(1 - e^{-t/\tau}\right)$$
 avec $\tau = R$ C qu'on l'appelle la constante du temps du dipôle RC

NB:

Souvent la solution est Uc(t) = A. $(1 - e^{-\frac{t}{\tau}})$ dont la dérivée première est $\frac{dUc(t)}{dt} = A$. $\left(-\frac{1}{\tau}\right)$. $e^{-\frac{t}{\tau}} = A$. $\left(\frac{1}{\tau}\right)$. $e^{-\frac{t}{\tau}} = \frac{A}{\tau}$. $e^{-\frac{t}{\tau}}$

La representation de $u_C = f(t)$:

Mathématiquement la courbe qui représente $u_C = f(t)$ est la suivante tel que à t = 0 on a $u_C(0) = 0$ et quand $t \mapsto \infty$ on a $u_C = E$, pratiquement on considère $t > 5\tau$ on a $u_C(\infty) = E$

La courbe présente deux régime :

Un régime transitoire : la tension $u_c(t)$ varie au cours du temps .

Un régime stationnaire ou régime permanent où $u_C(t)$ reste constante et égale à E

Première méthode:

On utilise la solution de l'équation différentielle :

$$u_C(t=\tau) = E(1-e^{-1}) = 0{,}63E$$

 τ est l'abscisse qui correspond à l'ordonnée 0,63E

Deuxième méthode : utilisation de la tangente à la courbe à l'instant t=0.

Unité de la constante du temps τ :

D'après l'équation des dimensions , on a $[\tau] = [R]$. [C]

d'autre part
$$[R] = \frac{[U]}{[I]}$$
 et $[C] = \frac{[I]}{[U]}.[t]$ donc $[\tau] = [t]$
La grandeur τ a une dimension temporelle , son unité dans SI est le

seconde (s).

Expression de l'intensité du courant de chrage i(t):

On sait que l'intensité du courant de charge : $i(t) = C \frac{du_C}{dt}$ tel que

$$\frac{du_C}{dt} = \frac{E}{R_1 C} e^{-t/\tau}$$
 donc:

$$i(t) = \frac{CE}{R_1 C} \cdot e^{-t/\tau}$$

$$i(t) = \frac{E}{R_1} e^{-t/\tau}$$

tel que E/R_1 représente l'intensité de courant à l'instant t=0 c'est à dire à t = 0 on a $u_C = 0$ donc $E = R_1 I_0$ i.e $I_0 = \frac{E}{R}$.

$$i(t) = I_0 e^{-t/\tau}$$

5. Décharge d'un condensateur : Montage de la charge :

Interrupteur K sur la position (2)

Equation différentielle :

En appliquant la loi d'additivité des tensions $U_R + U_C = 0$ et les transitions

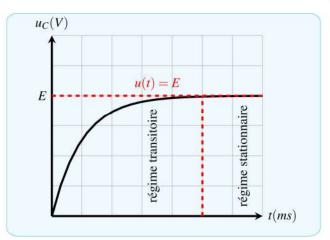
$$U_R = R.i = R.\frac{dq}{dt} = R.C.\frac{dU_c}{dt}$$

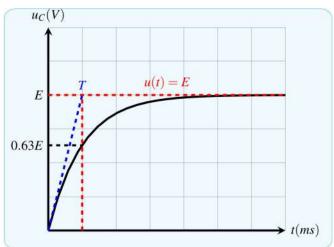
On aboutit à l'équation différentielle vérifié par une variable donnée Variable Uc:

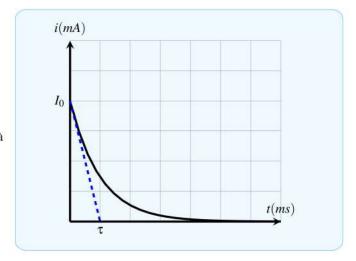
$$U_c + R.C. \frac{dU_c}{dt} = 0$$

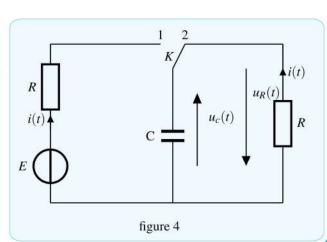
Variable q:

$$\frac{q}{c} + R.\frac{dq}{dt} = 0$$
 Ou $q + R.C.\frac{dq}{dt} = 0$









Equation horaire:

On considère Uc(t) comme variable et la solution de l'équation différentielle $Uc(t) = A.e^{-\frac{t}{\tau}} + B$

• Pour déterminer les constantes $\underline{A}, \underline{B}$ et $\underline{\tau}$, on remplace la solution et sa dérivée première dans l'équation différentielle

 $Uc(t) = A.e^{-\frac{t}{\tau}} + B \text{ et } \frac{dUc(t)}{dt} = A.\left(-\frac{1}{\tau}\right).e^{-\frac{t}{\tau}} = -\frac{A}{\tau}.e^{-\frac{t}{\tau}} \qquad U_c + R.C.\frac{dU_c}{dt} = 0 : \text{équation différentielle vérifiée par Uc}$

$$A.\,e^{-\frac{t}{\tau}}\,+\,B\,+\,R.\,C.\left(-\frac{\textbf{A}}{\tau}.\,\textbf{e}^{-\frac{t}{\tau}}\right)=0 \qquad \text{et} \qquad A.\,e^{-\frac{t}{\tau}}\,+\,B\,-\,R.\,C.\,A.\,\frac{1}{\tau}.\,e^{-\frac{t}{\tau}}=0 \ \text{donc} \qquad \textbf{A.}\,\textbf{e}^{-\frac{t}{\tau}}\,\left(\textbf{1}\,-\,\textbf{R.}\,\textbf{C.}\,\frac{\textbf{1}}{\tau}\right)+\textbf{B}=\textbf{0}$$

Par Egalité de deux fonctions polynomiales, l'équation est exacte si : $\mathbf{B} = \mathbf{0}$ et $(\mathbf{1} - \mathbf{R}, \mathbf{C}, \frac{1}{\tau}) = \mathbf{0}$ d'où $\mathbf{T} = \mathbf{R}, \mathbf{C}$

• Déterminer la constante A par les conditions initiales :

à t=0 la tension Uc(0)= E, on remplace dans l'équation horaire et on obtient : $Uc(t) = A \cdot e^{-\frac{t}{\tau}} + B$

$$E = A.e^0 + B = A + B$$
, $E = A + B$ et $A = E$ vu que $B = 0$

 $\mbox{Conclusion: A=E , B=0 et τ = R.C alors} \quad \mbox{Uc(t) = A. } \mbox{e}^{-\frac{t}{\tau}} + \mbox{B} = \mbox{E. } \mbox{e}^{-\frac{t}{\tau}} + \mbox{0 = E. } \mbox{e}^{-\frac{t}{\tau}}$

La representation de $u_C = f(t)$:

Mathématiquement la courbe qui représente $u_C=f(t)$ est la suivante tel que à t=0 on a $u_C(0)=E$ et quand $t\longmapsto \infty$ on a $u_c=0$, pratiquement on considère $t>5\tau$ on a $u_C(\infty)=0$

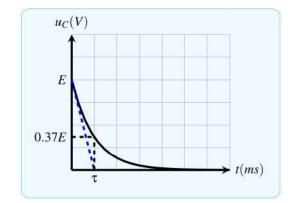
Dètermanition de la constante du temps τ:

Première méthode:

On utilise la solution de l'équation $u_C(V)$ différentielle :

$$u_C(t=\tau) = Ee^{-1}$$
) = 0,37E

Deuxième méthode : utilisation de la tangente à la courbe à l'instant t=0 . On a :



Expression de l'intensité du courant de chrage i(t):

On a
$$u_C(t) = Ee^{-t/\tau}$$

d'après la loi d'additivité des tensions : $u_R = -u_C(t)$ i.e : $u_R(t) = -Ee^{-t/\tau}$ et puisque $u_R = Ri(t)$ c'est à dire $i(t) = -\frac{E}{R}e^{-t/\tau}$

5. Energie électrique stockée dans un condensateur.

L'énergie électrique stockée par un condensateur est :

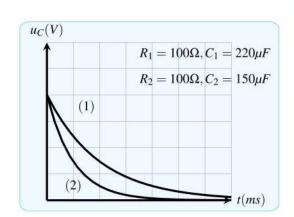
$$\mathscr{E}_e = \frac{1}{2}C.u_C^2 = \frac{1}{2}.\frac{q^2}{C}$$

 E_e s'exprime en joule (J) avec C en farad (F), u_C en volt (V) et q en coulomb (C) .

6. L'influence deτ sur la durée de la décharge

f. l'influence de sur la durée de la décharge

On suppose que $\tau_1>\tau_2$, on obtient la représentation graphique suivante : Quelle est l'influence de τ sur la décharge du condensateur dans le dipôle RC



NB:

- $\tau = R.C$: Constante de temps et est homogène à un temps
- Conditions initiales (à t=0):

Charge d'un condensateur : Uc(0) = 0 , q(0) = 0 , $I(0) = I_0 = \frac{E}{R}$

Décharge d'un condensateur : Uc(0) = E , q(0) = C.E , $I(0) = -I_0 = -\frac{E}{R}$