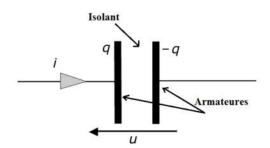
Chapitre 6

Le dipôle RC

I- Condensateur

1- Définition

- Le condensateur est un composant électronique, constitué de deux armatures conductrices et séparées par un isolant polarisable (ou «diélectrique»). Il a la particularité de pouvoir stocker de l'énergie (des charges électriques opposées sur ses armatures) lorsqu'il est soumis à une tension électrique U.
- La représentation symbolique d'un condensateur est donnée comme le montre le schéma ci-dessus.



- Chaque condensateur est caractérisé par une grandeur appelée capacité de symbole « C » et dont l'unité dans SI est le farad (symbole : F).
- La charge q d'un condensateur représente la quantité d'électricité accumulée sur l'un de ses armateurs :

$$q = q_A = -q_B \ (q_A > 0 \ ; q_B < 0)$$

Relation Charge q - Intensité I	Relation Charge q – Tension U	Relation Tension U – Intensité I
L'intensité du courant électrique I représente le débit de charges électriques (électrons), c'est la quantité d'électricité qui arrive à l'armateur du	directement proportionnelle à la	électrique U et l'intensité
condensateur par unité de temps : $i = \frac{dq_A}{dt} \label{eq:interpolation}$	bornes : $q(t) = C.U_c(t)$ telle que C est sa capacité	$i(t) = C. \frac{dU_C(t)}{dt}$

Remarque:

- C s'exprime en farad (F) ; q en Coulomb (C) ; u_{AB} en Volt (V) et I en Ampère (A).
- La valeur de la capacité C ne dépend que des caractéristiques de l'élément capacitif (nature du diélectrique isolant, surface des armatures, distance entre elles...)

2- Expression de l'énergie stockée dans un condensateur

La puissance électrique reçue par un condensateur est $P=U_c(t).i(t)$, avec $P=\frac{dE_e}{dt}$

D'où l'énergie électrique est : dE_e =P.dt \Rightarrow dE_e =U_c(t).i(t).dt \Rightarrow dE_e = U_C(t). C. $\frac{dU_C(t)}{dt}$. dt

Il s'ensuit de là que: $E_e = \int dE_e = \int C.U_C.dU_C = \frac{1}{2}.C.U_C^2 + k$

En conclusion, l'énergie électrique emmagasinée par un condensateur est : $\mathbf{E_e} = \frac{1}{2}\mathbf{C}$. $\mathbf{U_C^2} + \mathbf{k}$; (k = Cte ; et elle représente l'énergie électrique initiale du condensateur).

A t=0, le condensateur est non chargé, donc : $E_c(t=0) = 0$ et $U_c(t=0) = 0$ d'où : k = 0, en fin : $E_e = \frac{1}{2}$ C. U_c^2

3- Associations de condensateurs

Considérons 2 condensateurs C₁ et C₂ initialement déchargés.

a- Association en série

L'association en série de deux condensateurs C_1 et C_2 se comporte comme un «condensateur unique équivalent» de capacité $C_{\acute{e}q}$ telle que :

$$\frac{1}{C_{\acute{e}q}} = \frac{1}{C_1} + \frac{1}{C_2}$$

Pour l'association de n condensateur en série :

$$\frac{1}{C_{\acute{e}q}} = \sum_{i=1}^{i=n} \frac{1}{C_i} = \frac{1}{C_1} + \frac{1}{C_2} + \dots + \frac{1}{C_n}$$

b- Association en dérivation

L'association en dérivation de deux condensateurs C_1 et C_2 se comporte comme un « condensateur unique équivalent » de capacité $C_{\acute{e}q}$ telle que :

$$C_{\acute{e}a} = C_1 + C_2$$

Pour l'association de n condensateur en dérivation :

$$C_{\text{\'e}q} = \sum_{i=1}^{i=n} C_i = C_1 + C_2 + \dots + C_n$$

II- Réponse d'un dipôle (RC) à un échelon de tension

L'association en série d'un condensateur de capacité C et d'un conducteur ohmique de résistance R constitue un dipôle (R,C).

Nous allons soumettre différents circuits à un échelon de tension : on fait passer la tension aux bornes du circuit à étudier d'une valeur E_1 à une valeur E_2 en un temps très court considéré comme nul.

Pour cela, deux possibilités :

Echelon montant de tension	Echelon descendant de tension	
u ↑		
E ₂	E ₁	
$E_1 \longrightarrow t$	$\frac{E_2}{}$ t	
à t < 0 : U=0	à t < 0 : U # 0	
$\dot{a} t > 0 : U \# 0$	$ \dot{a} t > 0 : U = 0 $	
La valeur de U passe brutalement de E_1 =0 à E_2 à un instant $t = t_0$.		

1- Réponse d'un dipôle RC à un échelon montant de tension

a- Charge d'un condensateur - l'équation différentielle

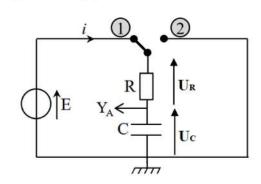
- Avant la fermeture de l'interrupteur K : Uc=0 (le condensateur est non chargé = déchargé)
- A un instant t=0 on ferme l'intercepteur K

D'après la loi d'additivité des tensions : $U_c(t) + U_R(t) = E$

Avec $U_R(t) = R.i(t)$ d'après la loi d'Ohm, et $i(t) = C.\frac{dU_C(t)}{dt}$

L'équation différentielle peut donc s'écrire :

$$R. C. \frac{dU_C(t)}{dt} + U_C = E$$



b- Expression de la tension Uc(t)

L'expression de la tension U_e(t) est la solution de l'équation différentielle, elle s'écrit sous la forme:

$$U_C(t) = A + B \cdot e^{-\frac{t}{\tau}}$$
, avec A, B et τ des constantes.

c- Expression de A, B et τ

On dérive l'expression $U_C(t) = A + B \cdot e^{-\frac{t}{\tau}} \implies \frac{dU_C(t)}{dt} = (A)' + (B \cdot e^{-\frac{t}{\tau}})' = 0 + (-\frac{B}{\tau} \cdot e^{-\frac{t}{\tau}}) = -\frac{B}{\tau} \cdot e^{-\frac{t}{\tau}}$ On remplace $U_c(t)$ et $\frac{dU_C(t)}{dt}$ par leurs expressions dans l'équitation différentielle :

$$R.C.\left(-\frac{B}{\tau}.e^{-\frac{t}{\tau}}\right) + A + B.e^{-\frac{t}{\tau}} = E \qquad \Rightarrow \qquad -\frac{R.C.B}{\tau}.e^{-\frac{t}{\tau}} + A + B.e^{-\frac{t}{\tau}} = E$$
$$\Rightarrow \quad B.e^{-\frac{t}{\tau}}.\left(1 - \frac{R.C}{\tau}\right) + A = E$$

Cette équation est vérifiée quel que soit t (\forall t), si $\left(1 - \frac{R.C}{\tau}\right) = 0$ et $\underline{\mathbf{A}} = \underline{\mathbf{E}}$; d'où $\underline{\boldsymbol{\tau}} = \mathbf{R.C}$

On sait qu'à l'instant t=0 le condensateur est déchargé (conditions initiales), Uc(t=0) = 0

D'où:
$$U_C(t=0) = A + B \cdot e^{-\frac{0}{\tau}} = 0 \implies A = -B = E \implies \underline{B} = -E$$

Donc l'expression de la tension U_c(t) devient :

$$U_C(t) = E - E.e^{-\frac{t}{\tau}}$$
 \Rightarrow $U_C(t) = E\left(1 - e^{-\frac{t}{\tau}}\right)$ avec : $\tau = R.C$

d- Dimension de la constante τ

$$\tau = R.C$$

D'après la loi d'Ohm : $U = R.i \implies R = \frac{U}{i}$

La dimension de R s'écrit : $[R] = \frac{[U]}{[1]}$ (I)

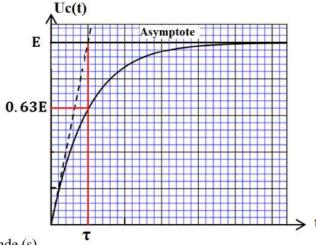
A partir de la relation : $i = C \cdot \frac{dU_C}{dt}$ \Rightarrow $C = \frac{i.dt}{dU_C}$

La dimension de C s'écrit : $[C] = \frac{[I] \cdot [T]}{[U]}$ (II)

D'apès (I) et (II), la dimension de τ est :

$$[\tau] = [R].[C] = \frac{[U]}{[I]}.\frac{[I].[T]}{[U]} = [T]$$

Le produit R.C a la dimension d'un temps, son unité est la seconde (s)



La durée de la charge d'un condensateur de capacité C peut être caractérisée par la constante du temps τ =R.C du dipôle RC. Elle peut être déterminée à partir de la courbe représentant les variations de $U_C(t)$ en fonction du temps par deux méthodes :

- Méthode 1 : τ est l'abscisse du point d'intersection entre la tangente à la courbe U_C = f(t) à t=0 et l'asymptote horizontale U_{C:max}.
- Méthode 2 : τ est aussi l'abscisse du point de la courbe U_C = f(t) d'ordonnée 0,63 x U_{C,max}.

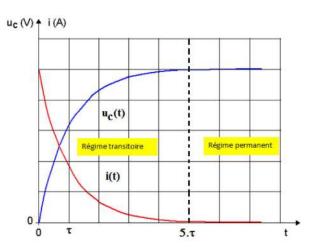
e- Expression de la charge q(t)

On sait que q(t) = C.U_c(t), donc : $q(t) = C.E\left(1 - e^{-\frac{t}{\tau}}\right)$

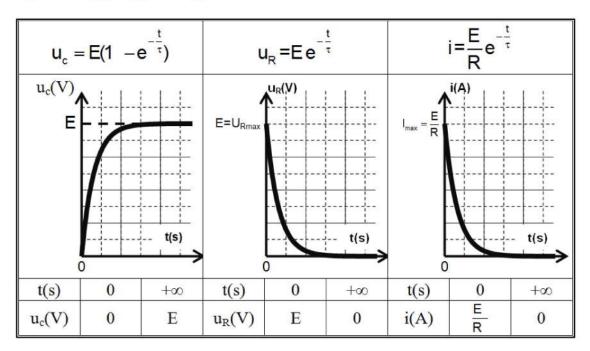
f- Expression de l'intensité i(t).

On sait que i(t) =
$$C.\frac{dU_C(t)}{dt}$$
, avec : $\frac{dU_C(t)}{dt} = \frac{E}{R.C}.e^{-\frac{t}{\tau}}$

donc:
$$i(t) = C \cdot \frac{E}{R.C} \cdot e^{-\frac{t}{\tau}} \implies i(t) = \frac{E}{R} \cdot e^{-\frac{t}{\tau}}$$



g- Graphes de U_C(t), U_R(t) et de i(t)



2- Réponse d'un dipôle RC à un échelon descendant de tension

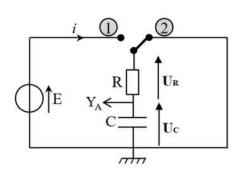
a- Décharge d'un condensateur - l'équation différentielle

- Avant l'ouverture de l'interrupteur K : Uc = E (le condensateur est chargé)
- A un instant t=0 on bascule l'intercepteur K à la position 2.

D'après la loi d'additivité des tensions : $U_c(t) + U_R(t) = 0$

Avec $U_R(t) = R.i(t)$ d'après la loi d'Ohm, et $i(t) = C.\frac{dU_C(t)}{dt}$

L'équation différentielle peut donc s'écrire : $R.C.\frac{dV_C(t)}{dt} + U_C = 0$



b- Expression de la tension Uc(t)

L'expression de la tension U_c(t) est la solution de l'équation différentielle, elle s'écrit sous la forme:

$$U_C(t) = A + B \cdot e^{-\frac{t}{\tau}}$$
, avec A, B et τ des constantes.

c- Expression de A, B et τ

On dérive l'expression $U_C(t) = A + B \cdot e^{-\frac{t}{\tau}} \implies \frac{dU_C(t)}{dt} = (A)' + (B \cdot e^{-\frac{t}{\tau}})' = 0 + (-\frac{B}{\tau} \cdot e^{-\frac{t}{\tau}}) = -\frac{B}{\tau} \cdot e^{-\frac{t}{\tau}}$

On remplace $U_c(t)$ et $\frac{dU_c(t)}{dt}$ par leurs expressions dans l'équitation différentielle :

$$R.C.(-\frac{B}{\tau}.e^{-\frac{t}{\tau}}) + A + B.e^{-\frac{t}{\tau}} = 0 \implies -\frac{R.C.B}{\tau}.e^{-\frac{t}{\tau}} + A + B.e^{-\frac{t}{\tau}} = 0$$
$$\Rightarrow B.e^{-\frac{t}{\tau}}.(1 - \frac{R.C}{\tau}) + A = 0$$

Cette équation est vérifiée quel que soit t (\forall t), si $\left(1 - \frac{R.C}{\tau}\right) = 0$ et $\underline{\mathbf{A}} = \mathbf{0}$; d'où $\underline{\tau} = \mathbf{R.C}$

On sait qu'à l'instant t=0 le condensateur est chargé (conditions initiales), $U_c(t=0) = E$

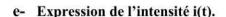
D'où:
$$U_C(t=0) = B.e^{-\frac{0}{\tau}} = E \implies \mathbf{B} = \mathbf{E}$$

Donc l'expression de la tension U_c(t) devient :

$$U_C(t) = E.e^{-\frac{t}{\tau}}$$
 avec : $\tau = R.C$

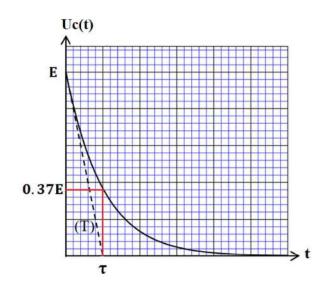
d- Expression de la charge q(t)

On sait que $q(t) = C.U_c(t)$, donc : $q(t) = C.E.e^{-\frac{t}{\tau}}$



On sait que i(t) = $C.\frac{dU_C(t)}{dt}$, avec : $\frac{dU_C(t)}{dt} = -\frac{E}{R.C}.e^{-\frac{t}{\tau}}$

donc:
$$i(t) = -C.\frac{E}{RC}.e^{-\frac{t}{\tau}} \implies i(t) = -\frac{E}{R}.e^{-\frac{t}{\tau}}$$



f- Graphes de U_C(t), U_R(t) et de i(t)

$u_c = Ee^{-\frac{t}{\tau}}$	$u_R = -Ee^{-\frac{t}{\tau}}$	$i = \frac{-E}{R}e^{-\frac{t}{\tau}}$
E=U _{cmax} (V) (s)	$U_{Rmax} = -E$	$\int_{\text{max}}^{\mathbf{i}(\mathbf{A})} \frac{\mathbf{t}(\mathbf{s})}{\mathbf{R}}$